Two New Bis-alkaloids from the Aerial Part of Piper flaviflorum

by Yu Wu^a)¹), Cheng-Jian Zheng^a)¹), Xue-Hong Deng^a)^b), and Lu-Ping Qin*^a)

^a) Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, P. R. China (phone: +86-21-81871300; fax: +86-21-81871300; e-mail: qinsmmu@126.com)
^b) Department of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Huatuo Road, Fuzhou 350108, P. R. China

Two new bis-alkaloids, flavifloramides A (1) and B (2), as well as two known alkaloids, *N*-transferuloyltyramine (3) and paprazine (4), were isolated from the aerial part of *Piper flaviflorum*. The structures of the new compounds were elucidated by spectroscopic analyses, including 2D-NMR techniques.

Introduction. – Plants of the *Piper* genus are well-known as rich sources of a variety of alkaloids, which have been reported to possess versatile beneficial pharmacological activities, such as anti-inflammatory, antinociceptive, anticancer, and antidepressant properties [1-9]. In the course of searching for novel bioactive components derived from the plants of the *Piper* genus, two new bis-alkaloids, also named lignanamides, *i.e.*, flavifloramides A²) (1) and B²) (2), as well as two known alkaloids, *N-trans*-feruloyltyramine (=(2*E*)-3-(4-hydroxy-3-methoxyphenyl)-*N*-[2-(4-hydroxyphenyl)-ethyl]prop-2-enamide; 3) and paprazine (=(2*E*)-3-(4-hydroxyphenyl)-*N*-[2-(4-hydroxyphenyl)-thyl]prop-2-enamide; 4), were isolated from the aerial part of *Piper flaviflorum*, an indigenous species in southern China. This article describes the isolation and structure elucidation of the new compounds.

Results and Discussion. – Repeated column chromatography of the CH_2Cl_2 extract from the aerial part of *P. flaviflorum* afforded compounds 1-4.

Flavifloramide A (1), which was obtained as an amorphous white powder, had the molecular formula $C_{37}H_{38}N_2O_{10}$ with 18 degrees of unsaturation, deduced by HR-ESI-MS (m/z 671.2524 ($[M + H]^+$)). The IR spectrum showed absorption bands for amide C=O groups at 1647 and 1613 cm⁻¹ and for OH groups at 3356 cm⁻¹. The ¹H-NMR spectrum (*Table 1*) exhibited eight aromatic H-atoms giving rise to two pairs of *ds* (δ (H) 6.66 and 6.94 (2d, J = 8.4 Hz, 2 H each), and δ (H) 6.63 and 6.80 (2d, J = 8.4 Hz, 2 H each). Another two pairs of correlated ¹H-NMR signals (δ (H) 3.16–3.18 and 3.33–3.35 (2m, 1 H each), δ (H) 2.51 and 2.52 (2t, 1 H each), and δ (H) 3.36–3.37 (m, 2 H), and 2.67 (t, 2 H)) together with the IR spectrum (1647 and 1613 cm⁻¹) suggested the presence of two acylated tyramine (=4-(2-aminoethyl)phenol) moieties in the molecule. Moreover, four aromatic H-atoms appeared at δ (H) 6.03 and 6.32 (2d, J = 1.8 Hz, 1 H each) and δ (H) 6.76 and 7.26 (2s, 1 H each), together with three MeO

© 2013 Verlag Helvetica Chimica Acta AG, Zürich

¹) These two authors have contributed equally to this work.

²⁾ Arbitrary atom numbering; for systematic names, see Exper. Part.

Table 1. ¹*H*-*NMR Data* (600 MHz, CD₃OD, at 27°) of **1**, **2**, and **5**. δ in ppm, *J* in Hz.

H-Atom ²)	1	5	2
H-C(1)	4.79 (br. s)	5.02 (br. s)	4.84 (br. s)
H-C(2)	3.66 (d, J = 1.2)	3.70 (s, 1 H)	3.70 (d, J = 1.8, 1 H)
H-C(4)	7.26(s)	7.20(s)	7.28 (s)
H-C(5)	6.76 (s)	6.68 (s)	6.76 (<i>s</i>)
H–C(2′,6′)	6.32, 6.03 (2d, J = 1.8 each 1 H)	6.24 (s, 2 H)	6.33 (s, 2 H)
$CH_2(a)$	3.33-3.35,	3.38 (<i>m</i>)	3.36-3.42,
	3.16-3.18 (2 <i>m</i> , each 1 H)		3.17-3.21 (2 <i>m</i> , each 1 H)
$CH_2(a')$	3.36–3.37 (<i>m</i>)	3.26 (<i>m</i>)	3.33 - 3.35(m)
$CH_2(b)$	2.52, 2.51 (2 <i>t</i> , each 1 H)	2.53, 2.52 (2 <i>t</i> , each 1 H)	2.53, 2.52 (2 <i>t</i> , each 1 H)
$CH_2(b')$	2.67(t)	2.67 (t)	2.67 (<i>t</i>)
H–C(2",6")	6.94 (d, J = 8.4, 2 H)	6.73 (d, J = 8.5, 2 H)	6.92 (d, J = 9.0, 2 H)
H–C(2"',6"')	6.80 (d, J = 8.4, 2 H)	6.84 (d, J = 8.5, 2 H)	6.81 (d, J = 8.4, 2 H)
H–C(3",5")	6.66 (d, J = 8.4, 2 H)	6.54 (d, J = 8.5, 2 H)	6.64 (d, J = 9.0, 2 H)
H–C(3"',5"')	6.63 (d, J = 8.4, 2 H)	6.56 (d, J = 8.5, 2 H)	6.63 (d, J = 8.4, 2 H)
MeO-C(3')	3.73 (s)	3.60(s)	3.68 (s)
MeO-C(5')	_	3.60(s)	3.68 (s)
MeO–C(6)	3.91 (s)	3.82 (s)	3.90 (s)
MeO-C(8)	3.56 (<i>s</i>)	3.48 (s)	3.57 (s)

groups at $\delta(H)$ 3.56, 3.73, and 3.91 (3*s*). HMBC Cross-peaks suggested to position the three MeO groups at C(6), C(8), and C(3') (*Fig.*). As confirmed by the DEPT experiment, the downfield signals at $\delta(C)$ 170.0 and 174.0 corresponded to two C=O groups; moreover, the signals of twenty-six aromatic C-atoms ($\delta(C)$ 104.1, 109.2, 109.4, 116.3, 124.4, 125.3, 127.0, 130.7, 130.8, 131.2, 131.4, 133.7, 135.2, 135.4, 143.1, 146.1, 147.0, 149.2, 149.5, 156.7, and 156.8) three MeO groups ($\delta(C)$ 56.7, 56.8, and 60.8), four CH₂ groups ($\delta(C)$ 35.4, 35.6, 42.4, and 42.8), and two aliphatic CH groups ($\delta(C)$ 41.4 and 50.3) were also present (*Table 2*).

Figure. Key HMBCs of 1

C-Atom ²)	1	5	2
C(1)	41.4 (<i>d</i>)	41.6 (<i>d</i>)	41.6 (<i>d</i>)
C(2)	50.3(d)	49.2 <i>(d)</i>	50.2 (d)
C(3)	127.0(s)	127.1(s)	127.2(s)
C(4)	135.2(d)	135.1 (<i>d</i>)	135.2(d)
C(5)	109.2(d)	109.1(d)	109.1(d)
C(6)	149.2(s)	149.2 (s)	149.2(s)
C(7)	143.1(s)	143.1 (s)	143.1(s)
C(8)	147.0(s)	146.9 (s)	147.0(s)
C(2a)	174.0(s)	174.0 (s)	174.0(s)
C(3a)	170.0(s)	170.0(s)	170.0(s)
C(4a)	124.4(s)	124.3(s)	124.3(s)
C(8a)	125.3(s)	125.2(s)	125.2(s)
C(1')	135.4(s)	135.3 <i>(s)</i>	135.3 (s)
C(2')	104.1(d)	106.0(d)	106.0(d)
C(3')	149.5(s)	149.0 (s)	149.0 (s)
C(4')	133.7(s)	135.3 (s)	135.1 (s)
C(5')	146.1(s)	149.0 (s)	149.0(s)
C(6')	109.4(d)	106.0(d)	106.0(d)
C(1")	131.2 <i>(s)</i>	131.1 (s)	131.1(s)
C(2",6")	130.8(d)	130.7(d)	130.8(d)
C(3",5")	116.3(d)	116.2(d)	116.2(d)
C(4'')	156.8(s)	156.8(s)	156.8(s)
C(1''')	131.4 <i>(s)</i>	131.3 (s)	131.4(s)
C(2''',6''')	130.7(d)	130.8(d)	130.7(d)
C(3''',5''')	116.3 (d)	116.2(d)	116.2(d)
C(4''')	156.7(s)	156.8(s)	156.8(s)
C(a)	42.8(t)	42.4(t)	42.8(t)
C(a')	42.4(t)	42.8(t)	42.4(t)
C(b)	35.4(t)	35.4(t)	35.4(t)
C(b')	35.6(t)	35.6(t)	35.6(t)
MeO-C(3')	56.7(q)	56.7(q)	56.7(q)
MeO-C(5')	_	56.7 (q)	56.7(q)
MeO-C(6)	56.8(q)	56.8(q)	56.8(q)
MeO-C(8)	60.8(q)	60.8(q)	60.8(q)

Table 2. $^{\it I3}C$ -NMR Data (150 MHz, CD₃OD, 27°) of 1, 2, and 5. δ in ppm.

The NMR spectra of **1** were analogous to those of the known compound **5** [10] (*Table 2*), except for the disappearance of the signal corresponding to an MeO group. The relative configuration at C(1) and C(2) could be assigned in analogy with that of **5**, which was confirmed by the negative optical rotation value and the small coupling constant between H–C(1) (δ (H) 4.79 (br. *s*) and H–C(2) (δ (H) 3.66 (*d*, *J* = 1.2 Hz)), suggesting a relative *trans* configuration between H–C(1) (β -oriented) and H–C(2) (α -oriented) [11]. Finally, the structure of **1** was elucidated as the 5'-O-demethyl derivative of **5**, and it was named flavifloramide A²).

Flavifloramide B (2), was obtained as an amorphous white powder which possessed a molecular formula $C_{38}H_{40}N_2O_{10}$ on the basis of its HR-ESI-MS (m/z 685.2683 ([M +H]⁺)), indicating 18 degrees of unsaturation. The IR spectrum also indicated the presence of amide C=O groups (1653 and 1613 cm⁻¹) and OH groups (3290 cm⁻¹). According to the molecular formula and NMR data, **2** was determined to possess the same general pattern as **5**, differing only in the ¹H-NMR signals of H–C(1) (δ (H) 4.84 (br. s) in **2** and 5.02 (br. s) in **5**; *Table 1*). Moreover, opposite optical-rotation values, *i.e.*, $[\alpha]_D^{25} = +19$ (c = 0.10, MeOH) for **2** and $[\alpha]_D^{25} = -20$ (c = 0.062, MeOH) for **5** [10], indicated α - and β -orientation of H–C(1) and H–C(2) in **2**, respectively, opposite to those in **1** and **5** (relative configurations). The structure of **2** was, therefore, elucidated as shown, and it was named flavifloramide B²).

The known alkaloid compounds were identified as *N*-trans-feruloyltyramine (3) and paprazine (4) by comparing their ¹H- and ¹³C-NMR data with those reported [12–14]. From the structures of 3 and 4, it could be deduced that they acted as molecular units of 1 and 2 in the course of the secondary-metabolite biosynthesis in the plant [15].

Experimental Part

General. Anal. TLC: silica-gel plates (Yantai Institute of Chemical Technology), petroleum ether/ AcOEt 1:1 as eluent; visualization under UV light, and by spraying with 7% aq. H₂SO₄ soln., followed by heating. Column chromatography (CC): silica gel (SiO₂, 200–300 or 300–400 mesh; *Qingdao Marine Chemical Factory*). Optical rotations: Jasco-P-1020 spectropolarimeter. UV Spectra: Shimadzu-UV-260 spectrophotometer; anh. MeOH solns; λ_{max} (log ε) in nm. IR Spectra: Avatar-360-ESP spectrophotometer (*Thermo Nicolet*); KBr pellets; $\tilde{\nu}$ in cm⁻¹. ¹H- and ¹³C-NMR Spectra: DRX-600 spectrometer; CD₃OD solns.; δ in ppm rel. to Me₄Si as internal standard, J in Hz. HR-ESI-MS: Bruker Apex-7.0-Tesla FT-MS apparatus; in m/z.

Plant Material. The aerial parts of *Piper flaviflorum* were collected in Xishuangbanna, Yunnan Province, P. R. China, in May 2011. A voucher specimen (#201104) was deposited with the Herbarium of Materia Medica, School of Pharmacy, Second Military Medical University, Shanghai, P. R. China.

Extraction and Isolation. The air-dried aerial part (10 kg) of *P. flaviflorum* was extracted exhaustively with 80% aq. EtOH at r.t. The EtOH extract was concentrated to yield a semi-solid (700 g), which was suspended in H₂O (700 ml), and extracted with CH₂Cl₂ (3×500 ml). The combined org. phase was concentrated to yield a residue (100 g), part of which (90 g) was subjected to CC (SiO₂ (1 kg), petroleum ether/AcOEt gradient): *Fractions 1–7. Fr. 6*, eluted with petroleum ether/AcOEt 1:1, was subjected to repeated CC (SiO₂; petroleum ether/AcOEt 3:1), and then to prep. PTLC (petroleum ether/AcOEt 1:1): **1** (6.4 mg) and **2** (10 mg). *Fr. 5* eluted with petroleum ether/AcOEt 1:1, was subjected to repeated CC (SiO₂, petroleum ether/AcOEt 2:1): **3** (100 mg) and **4** (160 mg).

Flavifloramide A (=rel-(1R,2S)-1-(3,4-Dihydroxy-5-methoxyphenyl)-1,2-dihydro-7-hydroxy-N²,N³-bis[2-(4-hydroxyphenyl)ethyl]-6,8-dimethoxynaphthalene-2,3-dicarboxamide; **1**): Amorphous powder. $[\alpha]_D^{25} = -13$ (c = 0.10, MeOH). UV (MeOH): 213 (4.82), 245 (4.44), 293 (4.03), 330 (4.16). IR (KBr):

3356, 2936, 2843, 1647, 1613, 1514, 1462, 1237, 1087, 831. ¹H- and ¹³C-NMR: *Tables 1* and 2. HR-ESI-MS: 671.2524 ($[M + H]^+$, $C_{37}H_{39}N_2O_{10}^+$; calc. 671.2526).

Flavifloramide B (= rel-(*1*R,2S)-*1*,2-*Dihydro*-7-*hydroxy*-*1*-(4-*hydroxy*-3,5-*dimethoxyphenyl*)-N²,N³*bis*[2-(4-*hydroxyphenyl*)*ethyl*]-6,8-*dimethoxynaphthalene*-2,3-*dicarboxamide*; **2**): Amorphous powder. $[\alpha]_D^{25} = +19 \ (c = 0.10, MeOH). UV (MeOH): 215 (4.80), 246 (4.41), 294 (4.01), 324 (4.15). IR (KBr): 3290, 2923, 2851, 1707, 1653, 1613, 1514, 1494, 1462, 1217, 1113, 831. ¹H- and ¹³C-NMR:$ *Tables 1*and 2. HR-ESI-MS: 685.2683 ([*M*+H]⁺, C₃₈H₄₁N₂O⁺₁₀; calc. 685.2665).

REFERENCES

- V.-S. Parmar, S.-C. Virinder, K.-S. Bisht, R. Jain, P. Taneja, A. Jha, O.-D. Tyagi, A.-K. Prasad, J. Wengel, C.-E. Olsen, P.-M. Boll, *Phytochemistry* 1997, 46, 597.
- [2] Y. Liu, V.-R. Yadev, B.-B. Aggarwal, M.-G. Nair, Nat. Prod. Commun. 2010, 5, 1253.
- [3] W.-F. Chiou, C.-H. Peng, C.-F. Chen, C.-J. Chou, Planta Med. 2003, 69, 9.
- [4] C.-Y. Yao, J. Wang, D. Dong, F.-G. Qian, J. Xie, S.-L. Pan, *Phytomedicine* 2009, 16, 823.
- [5] R.-V. Rodrigues, D. Lanznaster, D.-T. Longhi Balbinot, V. de M. Gadotti, V.-A. Facundo, A.-R. Santos, *Biol. Pharm. Bull.* 2009, 32, 1809.
- [6] D.-P. Bezerra, F.-O. Castro, A.-P. Alves, C. Pessoa, M.-O. Moraes, E.-R. Silveira, M.-A. Lima, F.-J. Elmiro, L.-V. Costa-Lotufo, *Braz. J. Med. Biol. Res.* 2006, 39, 801.
- [7] K. Selvendiran, J. Prince Vijeya Singh, D. Sakthisekaran, Pulm. Pharmacol. Ther. 2006, 19, 107.
- [8] M.-A. McFerren, D. Cordova, E. Rodriguez, J.-J. Rauh, J. Ethnopharmacol. 2002, 83, 201.
- [9] Y. Wang, H. Xie, S.-L. Pan, Am. J. Chin. Med. 2010, 38, 895.
- [10] M.-H. Chaves, N.-F. Roque, Phytochemistry 1997, 46, 879.
- [11] I. Sakakibara, Y. Ikeya, K. Hayashi, H. Mitsuhashi, Phytochemistry 1992, 31, 3219.
- [12] T. Yoshihara, S. Takamatsu, S. Sakamura, Agric. Biol. Chem. 1978, 42, 623.
- [13] G. Zhao, Y. Hui, J.-K. Rupprecht, J.-L. McLaughlin, K.-V. Wood, J. Nat. Prod. 1992, 55, 347.
- [14] N. Fukuda, M. Yonemitsu, T. Kimura, Chem. Pharm. Bull. 1983, 31, 156.
- [15] B. Schulz, C. Boyle, S. Draeger, A.-K. Rommert, K. Krohn, Mycol. Res. 2002, 106, 996.

Received June 7, 2012